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Electroencephalography (EEG) has provided evidence that the brain makes word-level          
predictions (Kuperberg & Jaeger, 2016; Van Berkum et al., 2005). However, such evidence             
comes from target words appearing in highly constraining sentence contexts, raising important            
questions about the generalizability of the effects. Here, we examined brain activity elicited by              
sentence-embedded words that varied substantially in their contextual support. We used a Long             
Short-Term Memory (LSTM) neural network to generate context-driven predictions about each           
word, modelling the predictions that human comprehenders might make (Sundermeyer et al.,            
2015). By comparing the model-generated predictions to the brain activity at each word, we              
evaluated the degree to which comprehenders were actually predicting words during sentence            
comprehension (inspired by earlier work by Frank et al., 2015; Frank & Hoeks, 2019).  

The LSTM predictions were tested against EEG data collected from 190 young adults (ages              
18-30) reading 400 experimental sentences (RSVP format), of which 240 were well-formed. For             
5440 words, we quantified the amplitude of the N400 ERP component as mean voltage 300-500               
ms post-stimulus-onset averaged across seven central-parietal channels. Substantial past         
research indicates that the N400 amplitude reflects the ease with which a word is accessed               
(Kutas and Federmeier, 2011). N400’s for each word were averaged across participants. 

We initialised our LSTM on pretrained 300-dimensional Word2Vec embeddings, which were           
pretrained on the English Wikipedia corpus, and fine-tuned the LSTM using 1043 well-formed             
sentences from prior studies that were not included in the current study.  

We used the LSTM to generate four predictors of brain activity. First, we used the LSTM to                 
generate a distribution of conditional probabilities for words, given the previous context, and             
from this calculated the surprisal of each presented word. Second, we developed a novel              
measure of adjusted surprisal, by subtracting the surprisal of the word most predicted by the               
LSTM from that of the presented word. This quantifies the surprisal of a word after accounting                
for the level of surprisal that might have been anticipated given the context. Third, we calculated                
each perplexity at each word with it’s left context. Finally, we calculated the cosine distance               
between Word2Vec embeddings for the presented word and the LSTM predicted word,            
reflecting the semantic distance between the most likely and actually presented words.  

Regressing the N400 measures on our four candidate predictors, we found that cosine             
distance, surprisal, and adjusted surprisal were significant predictors. Greater cosine distance           
predicted more negative N400s (F(1,5437) = 11.9, p < 0.001) and increased adjusted surprisal              
also predicted more negative N400s (F(1,5437) = 1159.4, p<0.001) when controlling for the             
other (Figure 1). Surprisal and adjusted surprisal were highly correlated and therefore could not              
be evaluated in the same multiple regression model, but a model with cosine distance and               
adjusted surprisal outperformed one with cosine distance and surprisal.  

These analyses show that the LSTM framework is a useful tool to examine EEG responses.               
More importantly, it shows that adjusted surprisal is a valuable way to quantify how the N400 is                 
reflecting the difference in what the brain was already prepared to process and what it actually                
received. We plan to continue this analysis to examine if the same measures also explain other                
EEG components like the P600 or if they are differentially explained by different measures.  



 

Figure 1 
 
The regression plane of N400 voltage 
on adjusted surprisal and cosine 
distance. Also plotted are a random 
selection of 200 points representing 
individual words in the analysis. 
 
 
 
 
 
 
 
 

 

Definitions of computed measures 
Surprisal Perplexity Cosine Distance 
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Table 1 - example sentences 
 

Type Example 
 

Simple My brother came into the room and looked around. 
Complex The quarterback that the fat bully ran from yelled for help. 

 

Well-formed Control The webs were spun by ​a​ ​spider​ this morning. 
Semantic Anomaly The webs were ​spun​ by ​a​ ​clown​ this morning. 
Syntactic Anomaly The webs were spun by ​from​ ​spider​ this morning. 

 

 
References 
Frank, S. L., & Hoeks, J. C. (2019). The interaction between structure and meaning in sentence 
comprehension. Recurrent neural networks and reading times. 

Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2015). The ERP response to the amount of information 
conveyed by words in sentences. ​Brain and language​, ​140​, 1-11. 

Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language comprehension?. 
Language, cognition and neuroscience​, ​31​(1), 32-59. 

Sundermeyer, M., Ney, H., & Schlüter, R. (2015). From feedforward to recurrent LSTM neural networks 
for language modeling. ​IEEE/ACM Transactions on Audio, Speech, and Language Processing​, ​23​(3), 
517-529. 

V​an Berkum, J. J., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating 
upcoming words in discourse: evidence from ERPs and reading times. ​Journal of Experimental 
Psychology: Learning, Memory, and Cognition​, ​31​(3), 443. 


