Inside the wug-test: phonological well-formedness and processing costs

Canaan Breiss (University of California, Los Angeles)

Introduction: Recent phonological research has focused on the role of lexical storage as a way to explain unexpected morpheme-specific deviations from grammar-wide phonological principles (Zuraw 2000, 2007, 2015; Moore-Cantwell & Pater 2016; Moore-Cantwell & Smith 2017; Zymet 2018, 2019). This implies a feed-forward relationship between grammar and lexicon in production: the phonological forms of morphemes are retrieved, along with optional item-specific information, and then the phonological grammar combines the morphemes subject to a set of general well-formedness principles, overridden only by lexically-specific information. This paper presents evidence for a bidirectional relationship between lexicon and phonological grammar, focusing on a phenomenon known as Lexical Conservatism (Steriade 1997). Lexical Conservatism describes scenarios in which a novel form (the Derivative (D), ex., compensable) unexpectedly undergoes a phonologically-motivated (markedness-improving) change to the Local Base (B₁) which would not otherwise be possible (ex., rightward stress shift, as in cómpensate + -able \rightarrow compénsabe, *cómpensable, while ínundate + -able \rightarrow ínundable, *inúndable). Steriade argues that this behavior depends on the presence of a phonologicallyadvantageous morphologically-related word (the Remote Base (B_R); here the final-stressed root allomorph in compéns-atory exists but *inúnd-X does not). This theoretical explanation makes strong psycholinguistic claims about the relationship between lexicon and grammar, suggesting the phonology can "recruit" related forms from the lexicon in real time.

Exp. 1 replicated and extended Steriade's original survey. 31 subjects were asked to read aloud 120 sentences where a B_{L} was presented alongside a D formed by attaching one of the affixes *-able*, *-ity*, and *-ism* (as in figure 1). Half the B_{L} s had phonologically advantageous B_{R} s. Afterwards, subjects completed a *knowledge check* where they were asked to read aloud and indicate whether they knew each of the B_{L} s they had seen, as well as the B_{R} s for the half of B_{L} s which had them. The dependent variable was stress placement in the D relative to that subject's production of B_{L} and B_{R} . Analysis was carried out using Bayesian hierarchical logistic regression; here I discuss findings for which there is greater than 95% certainty of a true effect. **Results:** The effect of an individual subject knowing the relevant B_{R} increased the likelihood that a D had stress placement mismatching B_{L} . We also observe phonological determinants of stress placement (figure 2). Exp. 1 supports Steriade's informal survey results and demonstrates that the form of the D is causally related to the presence of the B_{R} , but the effect is probabilistic, and interacts with purely-phonological principles of stress placement.

Exp. 2 extends Exp. 1 and incorporates a priming manipulation. If the findings of Exp. 1 are due to the presence of B_Rs in individual speakers' lexicons, we might expect the strength of the effect to be moderated by lexical characteristics of the B_R such as frequency and semantic similarity between B_L and B_R , and the influence of the B_R should be able to be increased by making it more salient to the speaker before they create the D from the B_L. 30 new subjects participated in an experiment with a similar design as Exp. 1 which included 40 B_Ls, half with B_Rs, fully crossed with affixes -able and -ic. Procedure followed Exp. 1, except that the knowledge check for half of the B_Rs (counterbalanced across subjects) preceded the D formation task, thus priming the B_R for when its B_L was encountered during the experiment. Data annotation and modeling followed Exp. 1. Results: As in Exp. 1, both lexical (knowing the B_R) and phonological (syllable weight, secondary stress) factors influenced D stress placement. Focusing on those B_Ls for which the B_R was known, we observe that a primed B_R exerted a greater effect, and this interacted with semantic similarity (figure 3). These facts suggest an architecture where the phonological grammar can "recruit" non-local phonological allomorphs (B_Rs) in real time, implying a dynamic trading relationship between processing effort in retrieving a second non-local form and potential gain in phonological well-formedness by doing so. This is not compatible with strictly feed-forward assumptions, since the data show effects of optimizing both for lexical and phonological factors, but is integrable with Levelt (1993)'s production model.

"An ideology centered on illustrating could be called illustrism"

Figure 1: Example of a carrier sentence used in Exp. 1. The B_L is italicized, and the D is underlined.

Figure 2: Partial results of Experiment 1, mean and standard error in each plot. The leftmost panel plots the probability of Derivative stress matching B_L stress as a function of whether the B_L was from Steriade (1997)'s original study, or novel for Experiment 1. The center panel plots the intersection of whether the B_R was known to an individual subject with whether the target syllable bore secondary stress (*no* as in *mét<u>ăl</u> vs. yes* as in *ín<u>sèct</u>). The rightmost panel plots the intersection of whether the B_R was known to an individual subject with whether the target syllable bore secondary stress (<i>no* as in *mét<u>ăl</u> vs. yes* as in *ín<u>sèct</u>). The rightmost panel plots the intersection of whether the B_R was known to an individual subject with whether the target syllable was heavy (<i>no* as in *drama* vs. yes as in *ballast*).

Figure 3: Marginal means and 95% Credible Intervals from the Bayesian hierarchical regression model in Exp. 2. Left panel indicates that Derivatives with primed B_Rs are more likely to be unfaithful in stress placement to their B_L . Right panel plots the interaction of priming with the semantic similarity between B_L and B_R , estimated by using the cosine similarity of their word embeddings in a Word2Vec neural network, normalized to the 0 (less similar) -1 (more similar) interval.

Selected References

Levelt, W. J. (1993). Speaking: From intention to articulation (Vol. 1). MIT press. Steriade, D. (1997). Lexical conservatism. *Linguistics in the morning calm*, 157-179. Zymet, J. (2018). Lexical propensities in phonology: corpus and experimental evidence, grammar, and learning (Doctoral dissertation, UCLA).