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Many influential theories of language processing assume that listeners learn and store previously 
experienced distributional statistics of the input (Dell & Chang, 2014; Frank & Goodman, 
2012; Futrell et al., 2020; Johnson, 2006; Levy, 2008; MacDonald, 2013; Maye et al., 2008; 
Pierrehumbert, 2001; Tanenhaus & Trueswell, 1995). This knowledge is considered critical for 
guiding listeners’ expectations to achieve efficient language processing. Further, recent work 
suggests that learning distributions specific to a talker can be a key to accommodating the cross-
talker variability ubiquitous in spoken language (Kleinschmidt & Jaeger, 2015; Theodore & Monto, 
2019). However, approximations of the relevant long-term or talker-specific experiences of 
distributions often remain unattainable or unreliable because large-scale data of sufficient 
resolution (e.g., estimates of means and variances of cues to a particular linguistic category) are 
lacking. So far, most evidence that is taken to support distributional learning as a mechanism 
underlying speech processing has been based on a short-/mid-term exposure to researcher-
curated distributional statistics (Clayards et al., 2008; but see McMurray & Jongman, 2011).  
The current study addresses this critical gap in the domain of speech prosody. We, for the first 
time, combine production, modeling, and comprehension experiments to examine whether 
listeners indeed store distributional statistics in productions and draw on them in 
comprehension. We built a corpus of 65 talkers, each producing 24 questions vs. 24 statements 
in the form of “It’ X-ing” (e.g., “It’s changing?” vs, “It’s changing”) resulting in a total of 2974 tokens 
(after excluding speech errors). Recorded utterances were segmented into three sections 1) it's, 
2) X (the stressed syllable), and 3)-ing. F0 and duration of each syllable were extracted (Fig.1A, 
B) and examined with respect to the structure of variability in the cue distributions (Fig.1C).  
Experiment 1) Do long-term statistics predict listeners’ categorization of a novel talker’s speech? 
We trained two 65 classifiers (multivariate ideal-observers, extending Kleinschmidt, 2019), one 
for each talker, based on means and variances of the question vs. statement categories directly 
estimated from the corpus (Fig.1D). We then bundled these talker-specific models by the talkers’ 
gender to create two “gender-specific” models, each simulating a prototypical female and a 
prototypical male talker. Additionally, we created a model without the knowledge of talker gender 
(the “gender-independent” model). We tested these models against human judgments (N = 240) 
on categorization of items from a 11-step continuum constructed based on recordings of two new 
talkers (1 male and 1 female). The gender-specific models significantly outperformed the gender-
independent one (Fig.2), suggesting that the long-term statistics estimated from male vs. 
female talkers’ productions directly predict listeners’ categorization of the prosodic input 
(R2 = .95). Listeners do seem to store gender-specific distributions and apply the knowledge in 
comprehension when first encountering a novel talker of a particular gender. 
Experiment 2) Do listeners accommodate unexpected distributional statistics from a novel talker? 
The same human listeners from Experiment 1 were randomly assigned to three conditions: 
Q(uestion)-biasing, No-bias, S(tatement)-biasing. Those in the Q-biasing condition heard 
prototypical statements (step 1) and the ambiguous item (step 7 for the female and step 8 for the 
male talker) disambiguated as questions via feedback. Those in the S-biasing condition instead 
heard the prototypical Questions (step 11) and the ambiguous items as statements. In the No-
bias condition, listeners received only prototypical questions and statements. Results show that 
the listeners incrementally adjusted their responses to the ambiguous items throughout 
the 30 trials (Fig.3, green lines), rapidly learning the underlying, talker-specific, distributions.  
In sum, the current study is among the first to empirically demonstrate that speech processing 
does indeed leverage the implicit knowledge derived from long- and short-term learning of 
distributional statistics. Listeners process the variable linguistic input by applying distinct sets of 



expectations derived through prior experiences, which continue to be fine-tuned in response to 
new exposure. 



 

Figure 1.  
A. Summary statistics of duration 
(top) and fundamental frequency (F0, 
bottom) in the intonation contours for 
“It’s X-ing” utterences produced by 65 
native English speakers.  
B. F0 values of individual tokens of 
“It’s changing” to illlustrate the 
magnitude of talker variability seen 
for each of the 24 item types. 
C. Group-level variations of syllable 
mean F0 (y-axis) and duration (x-axis) 
in the ~3000 tokens collected;  
D. Talker-specific ideal observer 
models of productions for two example 
talkers (Talker 1 and Talker 2). 

Figure 3.  
A. Overall response patterns across 
the between-subject conditions. X-
axis: The relative ordering of the 15 
exposure tokens associated with the 
question vs. the statement 
feedback. Blue and yellow indicate 
unambiguous tokens (Step 1 and 
Step 11, respectively) and green 
represents the ambiguous items. 
Error bars indicate bootstrapped 
95% confidence intervals.  
B. Responses given to the 
prosodically ambiguous tokens in 
the female vs. the male talker 
conditions; the top line (circles) and 
the bottom line (crosses) represent 
the Question-Biasing and the 
Statement-Biasing conditions.  

 
B.  

Figure 2.  

Categorization functions predicted by 
ideal observers (lines) and actual 
categorization by human listeners 
(pointranges). (The points indicate the 
by-item means averaged across 
listeners. Error bars indicate 
bootstrapped 95% confidence 
intervals. The human data plotted are 
identical between the two panels.) A : 
gender-independent model, wherein 
the two lines represent predictions of 
one model for the female vs. male 
talker data. B: gender-specific 
models. 


