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Introduction: N400 and P600 event-related potential (ERP) components have long been the 
object of study in psycholinguistics. Traditional accounts have associated N400 effects with 
semantic violations, and P600 effects with syntactic violations [1,2]. However, this picture is 

complicated by P600 effects—without N400 effects—in response to animacy [3,4] and thematic-

role [5] violations (but only sometimes [6]), as well as biphasic N400/P600 effects for conventional 
semantic violations [5]. Building on explanations involving interplay of plausibility-driven and 
syntax-driven interpretations [3,7], we present a computational model that accounts for these 
complicating observations via a noisy channel modeling framework. Our model assumes early-
stage sentence interpretations determined by noisy channel computation (influenced by 
plausibility), with these early interpretations driving the N400 amplitude. The P600 amplitude 
reflects reconciliation of the early interpretation with the true (syntax-driven) interpretation, and is 
modulated by the extent to which early interpretations deviate from the true input. Running this 
model on original experimental stimuli, we successfully simulate N400 and P600 effects from 
seven studies in this literature [3-6]. Method: We use original stimuli from psycholinguistic 
experiments featuring semantic / thematic violations, with empirical results varying between N400 
effect only, P600 effect only, and biphasic N400/P600 effect (see Table 1). Our use of real 
experimental stimuli is of note because computational psycholinguistic models often use idealized 
inputs, while we account for idiosyncratic properties of the real stimuli. To estimate relevant 
properties of these stimuli (e.g., plausibility, semantic similarity), we draw on outputs of pre-trained 
models used in natural language processing (NLP). Noisy channel model: We implement a 
noisy channel model to estimate posterior probabilities of potential early interpretations (S i) given 
presented input (Sp). These posterior probabilities are based on a) the prior probability of Si, and 
b) the likelihood of seeing Sp as a distortion of Si. For the prior P(Si), we aim to capture 
interpretation plausibility, which we approximate via sentence probability estimates from a large 
neural network pre-trained on word prediction (OpenAI GPT) [8]. We base the likelihood P(Sp|Si) 
on the Levenshtein edit distance between Si and Sp, to capture stronger likelihood of smaller 
deviations from true input. For each stimulus item Sp, we compute posterior interpretation 
probabilities for the true input itself, and for one alternative (for anomalous items, a plausible 
alternative; for control items, an anomalous counterpart). The interpretation with the higher 
posterior probability is identified as the early interpretation. N400 simulation: N400 amplitude is 
approximated by the neural network probability of the target word, given prior context, within the 
selected early interpretation. P600 simulation: To capture reconciliation between interpretations, 
P600 amplitude is simulated as difference between representations of the early interpretation and 

the true input, obtained from a neural network pre-trained to detect semantic similarity (fine-tuned 

DistilBERT) [9]. Results: Simulated response amplitudes are averaged by condition, and effects 
are determined by amplitude differences between critical and control conditions. Results are 
shown in Fig 1. We see that the model successfully predicts N400 and P600 effects from seven 
of our eight target experiments. The one failure is a P600 effect appearing for animacy-2 [3]—but 
we believe that this can be attributed to limitations in the pre-trained neural networks (which show 
signs of particularly poor estimates on the stimuli in this experiment), rather than to fundamental 
limitations of our model. Conclusions: These results support an account of sentence processing 
involving early, plausibility-driven interpretation stages (informed by rational inference), reflected 
in the N400—followed by reconciliation with syntax-driven interpretations, reflected in the P600. 
Prior work has posited plausibility/syntax interplay [3,7], and other work has linked predictions of 
noisy channel models to patterns in comprehenders’ final interpretations [10,11], and in the P600 
[12]. However, to our knowledge this is the first fully-specified computational formalization of 
plausibility/syntax interplay, the first implemented noisy channel model for simulation of N400 and 
P600, and the first model of either type to carry out direct prediction of both N400 and P600 
components, using real experimental stimuli, across this range of experiments. 



Table 1. List of simulated experiments, with experimental manipulations and results.  

ID  Manipulation  Violation type Result  Source  

reversal-1 role-reversal Thematic role P600 [5] 

reversal-2 role-reversal Thematic role N400 [6] 

animacy-1 Active/passive Animacy  P600 [3] 

animacy-2 Active/passive Animacy  N400 [3] 

animacy-3 Active/passive Animacy  P600 [4] 

substitution-1 word substitution Lexical meaning N400 & P600 [5] 

substitution-2 word substitution Lexical meaning  N400 & P600 [5] 

substitution-3 word substitution Lexical meaning  N400 [5] 

 
Fig.1. Simulated N400 (left) and P600 effects (right) across experiments. * represents significant 
N400/P600 effect in the original human experiment. Dotted line represents a threshold (determined post-
hoc) allowing for delineation between presence and absence of effect. 
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